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Abstract

Detailed ®nite element analyses are performed for center cracked plate (CCP) and double edge cracked plate

(DECP) in non-hardening materials under plane strain conditions. The objective is to systematically investigate the
e�ects of deformation level, loading type, crack depth and specimen dimension on crack-tip ®elds and constraints of
these two specimens. Special attention is placed on (a) under what conditions the slip-line ®elds can be present near

the crack tip, and (b) determining what deformation mechanism makes the crack-tip ®elds signi®cantly di�erent in
the two specimens at fully plastic state.
The results reveal that (a) at load levels much smaller than the limit load (i.e., small-scale yielding) the crack-tip

®elds are close to the Prandtl ®eld for both specimens, (b) the e�ects of crack depth a/W on the crack-tip ®eld is not

remarkable for CCP, but signi®cant for DECP at the limit load, (c) as L/Wr2.4 for CCP and L/Wr2 for DECP,
the crack-tip ®elds are independent of the specimen length L/W, (d) at the limit load, the crack face is under
compression for all CCP, and (e) a compression (tensile) zone exists at the crack face of shallow (deep) cracked

DECP. Moreover, it is found that there exist tensile and compressive stresses along the vertical centerline of
specimen for both CCP and DECP which result in a bending moment MVL. The di�erence between MVL and the
moment generated by the applied far-®eld loads makes the crack opening stress non-uniform along the remaining

ligament. Recall that the slip-line ®elds for both the CCP and DECP have uniform opening stress along the
ligament. At the limit load, therefore, the numerical crack-tip stress ®elds can only approach to, but cannot attain
to, the slip-line ®elds for both CCP and DECP specimens.

In addition, through comparison of the di�erent limit loads given for DECP specimens, the present results
indicate that the limit load formula given by Kumar et al. (EPRI, 1981) is valid only for 0.4 R a/W R 0.7, whereas
the formula of Ewing and Hill (1967) can be used for any crack depth. # 1999 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Characterization of crack-tip stress and strain ®elds is fundamental to the interpretation of fracture of
solids. Furthermore, the crack-tip constraint a�ects the fracture toughness of test specimens; thus is
important for integrity assessment of engineering structures. For power-law hardening materials,
Hancock et al. (1993), Shih et al. (1993) and Chao et al. (1994) have quanti®ed the constraint of crack-
tip ®elds by using J-T, J-Q and J-A2 parameters, respectively, for cracked specimens with di�erent
geometry and loading con®gurations. Chao and Zhu (1998) summarized the results of crack-tip ®elds in
hardening materials and investigated the dominance of J-A2 characterization (Yang et al., 1993) and size
requirements of specimens for a valid J-A2 two-parameter fracture testing. For elastic-perfectly plastic or
non-hardening materials, Lee and Parks (1993) carried out fully plastic numerical analyses of single edge
cracked specimen subjected to di�erent combined tension and bending for a deep crack of a/W= 0.5.
Kim et al. (1996) performed detailed ®nite element analyses to study the e�ect of crack depth on crack-
tip constraint at full yielding for single edge cracked specimens under pure bending. More recently, Zhu
and Chao (1999) characterized the constraint of crack-tip ®elds for several conventional specimens in
non-hardening materials under the framework of the J-A2 description.

At the state of complete yielding of a specimen, analyses based on perfect plasticity, such as the slip-
line ®eld and ®nite element analysis, could provide meaningful insights and reference values for low
hardening structural materials, and possibly for moderate-hardening materials. McClintock (1971)
showed that the stress and velocity slip-line ®elds around a notch or sharp crack tip are generally
di�erent for di�erent specimens under fully plastic conditions. In other words, the slip-line ®elds depend
on the specimen geometry, crack depth and loading con®guration. Miller (1988) and Wu et al. (1990)
summarized the limit loads and the slip-line ®elds for several conventional fracture-testing specimens
including both deep and shallow cracks. Among commonly used test specimens, CCP and DECP are the
representatives of the low and high constraint specimens, respectively, with signi®cantly di�erent limit
loads and slip-line ®elds from each other. Thus, one of the objectives of the current paper is to study the
deformation mechanism that induces the di�erence in the mechanics behavior of CCP and DECP
specimens, which cannot be given by slip-line ®elds.

The fracture toughness of a material is typically obtained by testing either compact tension (CT) or
single edge notched bending (SENB) specimens. However, there is considerable interest in use of other
specimens such as CCP and DECP (Lei and Neale, 1997). The CCP and DECP specimens enable the
e�ect of constraint at other levels and o�er the potential to reduce conservative estimates from SENB or
CT specimens. McClintock (1971) gave the slip-line ®elds of CCP and DECP with deep cracks. Ewing
and Hill (1967) presented the slip-line ®elds of DECP for both deep and shallow cracks. Goldman and
Hutchinson (1975) analyzed fully plastic crack problems in a center-cracked strip. Kumar et al. (1981)
presented limit load results of both CCP and DECP. Leevers and Radon (1982) studied the in¯uence of
geometry on the elastic T-stress in CCP. Lee and Liebowitz (1977), Jansson (1986) and O'Dowd et al.
(1999) obtained ®nite element numerical values of J-integral for CCP in hardening materials under
uniaxial and biaxial loading. Shaw and Huang (1990) showed that buckling can occur in a thin CCP
under uniaxial tensile loads, whereas Quirk et al. (1966) and Quirk and Bevitt (1991) found that CCP
geometry assures stable crack growth when other test specimen geometries exhibit unstable crack
growth. Shih and German (1981), O'Dowd and Shih (1992), Chao and Zhu (1998) investigated CCP in
power-law materials to determine J (or J-A2) dominance zone and constraint levels. However, no
complete investigation has yet been reported for the crack-tip ®elds (or constraints) and deformation
mechanism of CCP and DECP with di�erent crack depths, specimen lengths and loading types in non-
hardening materials under various deformation levels.

In this paper, detailed ®nite element analyses (FEA) for CCP and DECP specimens subjected to
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remote tension are performed. Small deformation and plane strain conditions for non-hardening
materials are considered. The objective is to systematically investigate the e�ects of deformation level,
loading type, crack depth and specimen dimension on crack-tip ®elds and constraints of CCP and
DECP. Special attention is focused on (a) under what conditions the slip-line ®elds can be attained near

Fig. 1. Specimens and dimensions considered in this work (a) central cracked plate (CCP) and (b) double edge cracked plate

(DECP).

Fig. 2. Schematic stress distributions along the boundaries of one quadrant of a CCP specimen under uniformly distributed loads

and the coordinate systems at the crack tip ( p is uniformly distributed load, P = pWB is concentrated force, MVL and Mtop =

paWB/2 are moments. Positive sign denotes tensile stress and negative sign denotes compressive stress).
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the crack tip and (b) determining what deformation mechanism makes the crack-tip ®elds signi®cantly
di�erent for the two specimens at fully plastic yielding. In addition, several formulae for limit load of
DECP specimens are compared and discussed. In the following, Section 2 introduces the specimen
geometry and numerical model employed in the FEA. Section 3 and Section 4 present and discuss the
FEA results of crack-tip stress ®elds and constraints for these specimens.

2. Geometry and ®nite element analysis model

Consider a CCP specimen and a DECP specimen subjected to remote tensile loading, as shown in
Fig. 1(a) and (b), in which 2W, 2L, 2a and 2b are the plate width, plate length, crack depth and the
length of uncracked ligament, respectively. Specimen thickness is denoted by B. It is assumed that in all
cases the specimens are mounted in a vertical plane with vertically loading and a horizontal crack. The
horizontal and vertical symmetric centerlines of the specimens are denoted by H-line and V-line,
respectively. Due to symmetry, only one quadrant of the CCP or DECP is analyzed.

Fig. 2(a) shows schematically the stress distributions along the boundaries of one quadrant of a CCP
specimen for a uniformly distributed applied load. The stress variations along the ligament OD could be
approximately considered as the superposition of the stresses caused by the applied loads on the top
edge BC, as shown in Fig. 2(b), and the stresses caused by the internal stresses on the V-line AB, as
shown in Fig. 2(c). The crack opening stresses along OD is generally non-uniform because at the mid-
ligament (i.e. the middle of ligament) the moment Mtop generated by the applied load is not less than
the bending moment MVL resulted from the tensile and compressive stresses on the V-line, i.e.
MVL R Mtop. Similarly, the stress distributions along the boundaries of one quadrant of a DECP
specimen are schematically shown in Fig. 3(a) for the uniformly distributed applied load. The stress
distributions along the ligament OA are not uniform and could be considered approximately as the
superposition of two con®gurations, i.e. Fig. 3(b) and (c). In general, the relationship MVL R Mtop also
exists.

Note that if the applied loading is through rigid clamp on the ends, the stress distributions along all

Fig. 3. Schematic stress distributions along the boundaries of one quadrant of a DECP specimen under uniformly distributed loads

and the coordinate systems at the crack tip ( p is uniformly distributed load, P = pWB is concentrated force, MVL and Mtop =

paWB/2 are moments. Positive sign denotes tensile stress and negative sign denotes compressive stress).
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boundaries of CCP and DECP can be shown qualitatively in Fig. 4. Due to the deformation constraint
on the top edge BC, the applied stresses on BC would have both vertical and horizontal components
and they are not uniform. Since the applied vertical stress is higher (lower) in the central region of
DECP (CCP), the top moment Mtop and consequently the moment di�erence (Mtop ÿMVL ) could be
less than that for uniformly distributed loads shown in Fig. 2 or Fig. 3. Therefore, the degree of non-
uniformity of the stress distributions on the ligament for rigid displacements loading could be less than
that for distributed loads. In the case of displacement loading, the stress distributions on the ligament
could possibly approach the uniform state at the limit load.

Plane strain ®nite element analyses (FEA) were conducted to obtain detailed crack-tip stress ®elds for
CCP and DECP specimens with deep and shallow cracks under remote tension. The deep crack
specimens have a/W = 0.5 and 0.9 for CCP, a/W = 0.9 and 0.95 for DECP. The shallow crack

Fig. 4. Schematic stress distributions along the boundaries of one quadrant of (a) CCP and (b) DECP specimens under uniform

rigid displacement. (Positive sign denotes tensile stress and negative sign denotes compressive stress).

Fig. 5. Finite element mesh for the specimen analyzed which comprises of eight-node plane strain isoparametric elements. (a) The

entire mesh with 604 elements and 1925 nodes, (b) the focused crack-tip mesh with eighteen side-collapsed elements.
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specimens have a/W = 0.1 for CCP and a/W = 0.5 for DECP. Due to symmetry, only one quarter of
both CCP and DECP, as shown in Fig. 2(a) and Fig. 3(a), was modeled. Appropriate symmetric
boundary conditions were applied on the planes of symmetry. Loadings from very small to limit load
were applied. The numerical models employed the small-strain formulations. The material was modeled
as an isotropic elastic-plastic material obeying the non-hardening J2 ¯ow theory associated with the von
Mises yield rule. In this work, the material is assumed to have the tensile yield strength s0=445 MPa
and Young's modulus E = 222.5 GPa. Specimen half-width W is taken as 50 mm and specimen half-
length L= 3W, unless speci®ed otherwise.

The ®nite element mesh shown in Fig. 5 is used for both specimens. To avoid problems associated
with incompressibility, eight-node plane strain, second order isoparametric elements with reduced
integration (element type CPE8R from ABAQUS in version 5.6-1 (Hibbitt et al., 1997)) are employed in
all FEA calculations. Eighteen eight-node elements degenerated into wedge shape comprise the upper
half of the crack tip and twenty rings of elements are surrounding the crack tip. The innermost ring of
the elements has one side collapsed onto the crack tip. All the nodes in the collapsed side can be
separated after the loading is applied. The radial extent of the innermost ring element is about
1.34 � 10ÿ4b (where b is the ligament length) for deep crack specimens and 1.34 � 10ÿ4a (where a is the
crack depth) for shallow cracked specimens. A typical ®nite element model has about 1925 nodes and
604 elements.

Two types of loading conditions are applied on the top edge of the FEA model: one is uniformly
distributed applied load and the other is uniform rigid displacement. ABAQUS code uses a very
stringent criterion to ensure convergence of strains and stresses in the J2 ¯ow theory of plasticity. In
general, three to ®ve iterations are required for convergence in each load step. Under small-scale
yielding, speeds of convergence are the same for the two loading types. At large-scale yielding and at
load levels approaching the limit load, however, there exists some di�erence in convergence speeds for
the two loading types. FEA calculations in ABAQUS are easier to converge to the limit state for the
case of rigid displacements than the applied loads. The magnitude of applied displacements can be made
large enough to bring the specimens to their limit load state. The corresponding limit load can be
determined from the nodal reactions on the top edge.

3. Fully plastic crack-tip ®elds for CCP specimen

In this section, we report our FEA results for CCP specimens and discuss the e�ects of deformation
level or magnitude of applied load, loading type (uniformly distributed loads or uniform rigid
displacements), crack depth (a/W ) and specimen length (L/W ) on the crack-tip stress ®eld or constraint.
Particular emphasis is placed on under what conditions the crack-tip stress ®eld can reach the CCP slip-
line ®eld (McClintock, 1971) given by:

srr�y� � 2���
3
p s0�1ÿ cos2y�

syy�y� � 2���
3
p s0�1� cos2y�, 08RyR458 and 0RxRb �1�

sry�y� � 2���
3
p s0sin2y
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Based on this slip-line ®eld, the limit load (resultant) PL of the CCP specimen is given by

PL � 4���
3
p �Wÿ a�Bs0 �2�

In this section, unless speci®ed otherwise, the dimensions of the CCP specimen are a/W= 0.5 and
L/W = 3; loading type is the uniformly distributed load for small deformation levels and is the uniform

Fig. 6. Stress distributions of CCP specimen with a/W= 0.5 and L/W= 3 for uniformly distributed load P= 0.1PL. (a) Radial

distribution of stresses along the uncracked ligament, (b) angular distribution of stresses at r = 0.0005b.

Fig. 7. Stress distributions of CCP specimen with a/W= 0.5 and L/W= 3 for uniformly distributed load P= 0.8PL. (a) Radial

distribution of stresses along the uncracked ligament, (b) angular distribution of stresses at r = 0.05b.
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rigid displacement for large deformation levels or the limit load case. The rectangular and polar
coordinate systems at the crack tip are illustrated in Fig. 2(a).

3.1. E�ect of deformation level

Fig. 6(a) and (b) are the radial distributions of the stress components along the remaining ligament
and the angular variations of stresses at r =0.0005b from the crack tip, respectively, for a low applied

Fig. 8. Stress distributions of CCP specimen with a/W= 0.5 and L/W= 3 for uniformly distributed limit load P= 1.0PL. (a)

Radial distribution of stresses along the uncracked ligament, (b) angular distribution of stresses at r = 0.05b.

Fig. 9. Comparison of stress variations of CCP specimen with a/W= 0.5 and L/W= 3 for several uniformly distributed load levels

shown in ®gures. (a) Crack opening stress syy along the uncracked ligament, (b) normal stress sxx along the vertical centerline.
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load P = 0.1PL. As shown in Fig. 6(a), the stresses are small on the entire ligament; but when the crack
tip is approached the crack opening stress syy ahead of the crack tip has a sharp increase and
approximately attains the limiting value 2.97s0 given by the Prandtl slip-line ®eld (Prandtl, 1920).
Moreover, the Mises e�ective stress se is equal to s0 over almost the entire angular range around the
crack tip as shown in Fig. 6(b). Comparing Fig. 6(b) with Fig. 5 of Hutchinson (1968) or Fig. 1 of Zhu
and Chao (1999), it can be concluded that under small scale yielding the crack-tip ®eld of CCP is the
Prandtl ®eld, which is in agreement with Shih and German (1981).

Fig. 7(a) and (b) depict stress distributions along the uncracked ligament and around the crack tip at
r =0.05b, respectively, for an applied load P = 0.8PL. At this deformation level, (i) the stresses srr and
syy at the crack tip (r 4 0, y=08) decrease, (ii) the tensile stress syy on the ligament (®nite r, y=08)
increases, relative to the corresponding stress for P = 0.1PL, (iii) compressive stress srr occurs near the
crack face (y=1808) and (iv) an elastic sector (i.e. the region with se < s0) appears in 1008 < y R 1808.
At the limit load PL of CCP, stress distributions along the ligament and around the crack tip at r =
0.05b are illustrated in Fig. 8(a) and (b), respectively. These ®gures show that the stresses at the crack
tip decrease further and the compressive stress srr on the crack face increases as the applied load
increases. However, the tensile stress syy on the ligament is only close, but by no means equal, to a
uniform value with syy being slightly higher towards the crack tip. The elastic sector near the crack face
happens in 708 < y R 1808. All stresses in the plastic region, 08 R y R 458, are close to the slip-line ®eld
given by (1).

Fig. 9(a) and (b) show the comparisons of the stress distributions along the ligament and along the
vertical centerline (V-line) for several di�erent applied loads (P=0.1PL, P= 0.2PL, P= 0.5PL,
P= 0.8PL and P= 1.0PL ). From Fig. 9(a), one can see that the crack opening stress gradually
decreases at the crack tip but increases along the ligament as the applied load increases. This mechanics
behavior of CCP is consistent with that in a low hardening material with n =10 (c.f. Figures 8 and 9 in
O'Dowd and Shih, 1992). As a result, the constraint of the crack tip decreases gradually with increasing
load. Fig. 9(b) reveals that both tensile and compressive stresses on the V-line increase as applied load
increases. Thus a bending moment MVL that is the resultant of stress sxx on V-line increases as the

Fig. 10. Stress distributions of CCP specimen with a/W= 0.5 and L/W= 3 for uniformly rigid displacement at the limit load. (a)

Radial distribution of stresses along the uncracked ligament, (b) angular distribution of stresses at r = 0.05b.
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applied load increases. At the limit load, it can be calculated that MVL =0.5357abBs0 from the results
shown in Fig. 9(b). For uniformly distributed loads the resultant moment Mtop acting on the top edge
about the mid-ligament of CCP is pLaWB/2. In terms of uniformly distributed load pL=PL/(2WB ) and
formula (2), we have

Mtop � a�Wÿ a�Bs0=
���
3
p

10:5774abBs0 �3�
On the remaining ligament, therefore, there exists a counter-clockwise moment Mtop ÿMVL =

0.0416abBs0 about the mid-ligament. It appears that it is this moment that makes the crack opening
stress syy on the ligament non-uniform and larger at the crack tip (r4 0) than at the external boundary
(r4 b ), as shown in Fig. 8(a). This result corroborates the prediction in Section 2 and provides support
for why the numerical results at the limit state deviate somewhat from the slip-line ®eld (1).

3.2. E�ect of loading type

At the limit load, for the case of uniformly distributed applied load the numerical results have been
given in Fig. 8. For the case of applied rigid displacement, the stress distributions from FEA are shown
in Fig. 10(a) and (b). Comparison of stress variations along the remaining ligament and along the V-line
is shown in Fig. 11 for the two loading types. It is shown that the FEA results are almost the same for
the two loading cases. In Fig. 11(a) numerical results of the tensile stress syy from Shih et al. (1979) are
also shown. It can be seen that our FEA results for the two loading types are closer to the slip-line ®eld
(1). In Fig. 11(b) the tensile and compressive stresses along the V-line, thus the equivalent moment MVL,
are slightly larger for the case of rigid displacement than for the case of uniformly distributed loads.
Using the FEA results, it can be determined that the resultant moments MVL = 0.5408abBs0, Mtop =
0.5759abBs0, MtopÿMVL = 0.0351abBs0 for the displacement case and MVL = 0.5357abBs0, Mtop =
0.5773abBs0, MtopÿMVL = 0.0416abBs0 for the distributed load case. Thus, the moment di�erence
(MtopÿMVL ) acting on the uncracked ligament about the mid-ligament for the rigid displacement case is
indeed less than that for the distributed load case. Accordingly, the tensile stress syy along the

Fig. 11. Comparison of stress variations for CCP specimen with a/W= 0.5 and L/W= 3 under uniformly distributed loads and

rigid displacement at the limit load. (a) Stresses along the uncracked ligament, (b) normal stress sxx along the vertical centerline.
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uncracked ligament is relatively ¯at in the rigid displacement case, as shown in Fig. 11(a). This
conclusion corroborates our prediction in Section 2.

The numerical comparison in Fig. 12(a) shows that the angular variations of stresses are nearly the
same for the two loading cases. Fig. 12(b) indicates that our FEA results are in very good agreement
with those of O'Dowd et al. (1997), thus giving con®dence about the present FEA calculations and
results.

Fig. 12. Comparison of angular stress variations for CCP specimen with a/W= 0.5 and L/W= 3 at r = 0.05b at the limit load.

(a) Comparison between two loading types, (b) comparison between this paper and O'Dowd et al. (1997).

Fig. 13. Stress distributions of CCP specimen with a/W= 0.1 and L/W= 3 at the limit load. (a) Radial distribution of stresses

along the uncracked ligament, (b) angular distribution of stresses at r =0.05b.
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3.3. E�ect of crack depth (a/W)

Figs. 10, 13 and 14 illustrate the radial distributions of stresses along the remaining ligament and
angular variations of stresses around the crack tip at r = 0.05b for the crack depth a/W = 0.5, 0.1 and
0.9 at the limit load, respectively. For the three cracks, the angular variations of stresses around the
crack tip and the size of elastic sector near the crack face are similar. Fig. 15(a) indicates that except for

Fig. 14. Stress distributions of CCP specimen with a/W= 0.9 and L/W= 3 at the limit load. (a) Radial distribution of stresses

along the uncracked ligament, (b) angular distribution of stresses at r =0.05b.

Fig. 15. Comparison of stress variations of CCP specimen with L/W= 3 for a/W= 0.1, 0.5, 0.9 at the limit load. (a) Stresses

along the uncracked ligament, (b) normal stress sxx along the vertical centerline.
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the immediate vicinity of the crack tip, the stress distributions along the uncracked ligament are close to
the values of the slip-line ®eld (1) for the shallow crack a/W = 0.1, but deviate for the deep crack
a/W = 0.9. The stress variations for a/W = 0.5 are between those for a/W = 0.1 and a/W = 0.9. Using
the normal stress sxx along the V-line as plotted in Fig. 15(b), the equivalent bending moment are
determined as MVL =0.5689abBs0, 0.5408abBs0, 0.3095abBs0 for a/W = 0.1, 0.5 and 0.9, respectively.
Then from the moment Mtop, we obtain (MtopÿMVL ) = 0.0082abBs0, 0.0351abBs0, 0.2618abBs0 on the
ligament about the mid-ligament for the three cracks. The magnitudes of these moments determine the

Fig. 16. Stress distributions of CCP specimen with a/W= 0.5 and L/W= 0.75 at the limit load. (a) Radial distribution of stresses

along the uncracked ligament, (b) angular distribution of stresses at r = 0.05b.

Fig. 17. Stress distributions of CCP specimen with a/W= 0.5 and L/W= 10 at the limit load. (a) Radial distribution of stresses

along the uncracked ligament, (b) angular distribution of stresses at r = 0.05b.
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extent of uniformity of the stress distributions in Fig. 15(a). It should be noted that the CCP slip-line
®eld (1) corresponds to (MtopÿMVL ) =0 so that the opening stress on the ligament has to be uniform.
Our FEA results are non-uniform on the ligament, which can be attributed to the reason that
(MtopÿMVL ) > 0 for all crack depths. However, in the limit of a/W 4 0, our calculations show the
moment (MtopÿMVL ) approaches zero so that the stresses on the ligament approach to the slip-line ®eld
(1). With increasing crack depth the moment (MtopÿMVL ) becomes larger; accordingly the tensile stress
on the ligament deviates from the slip-line ®eld (1) further and the crack opening stress (or constraint)
increases near the crack tip for CCP.

3.4. E�ect of specimen length (L/W)

Leevers and Radon (1982), Lei and Neale (1997) pointed out that when specimen length is at lease
twice the specimen width (i.e. L/Wr2) for a CCP in elastic materials, the stress intensity factor, the
stress biaxiality ratio and the crack-tip stresses are independent of specimen length. To explore the e�ect
of L/W on the crack-tip ®elds for CCP in perfectly plastic materials, we choose L/W = 0.75, 3 and 10
to perform FEA calculations with a/W = 0.5. Figs. 16, 10 and 17 depict the radial distributions of
stresses on the remaining ligament and the angular variations of stress components at r = 0.05b for the
three specimens at the limit load, respectively. Comparing Figs. 16(b), 10(b) and 17(b), one can ®nd that
the angular variations of stresses are nearly the same for the long specimens with L/W = 3 and
L/W = 10. Comparing to the short specimen with L/W = 0.75, the di�erence in angular variation of
stresses for the two long specimens occurs only over 608 R y R 1808. For all three specimens,
compressive stress srr occurs on the crack face at limit load. However, only the compressive stress for
L/W = 0.75 attains yielding state near the crack face, the other two stay in the elastic state.

Comparison of stresses in Fig. 18(a) shows that (i) the stress distributions on the uncracked ligament
are identical for the two long specimens, and (ii) the opening stress syy on the ligament for the short
specimen is nearly the same as those of the long specimens in 0 R r/b R 0.6 but di�erent in 0.6 <r/b
R 1.0. The normal stresses sxx on the V-line as shown in Fig. 18(b) are identical and close to zero

Fig. 18. Comparison of stress variations of CCP specimen with a/W= 0.5 for L/W= 0.75, 3, 10 at the limit load. (a) Stresses

along the uncracked ligament, (b) normal stress sxx along the vertical centerline (Note: the scale y is normalized by L =10W ).
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near the top edge for the two long specimens, but they are quite di�erent from those for the short
specimen. For the short specimen, the stresses sxx along V-line exceed the yield strength in the regions
near the crack face and near the top edge. Thereby, a compressive yielding zone and a tensile yielding
zone occur simultaneously in these two regions. This ®nding from our FEA is consistent with the
experimental observation of Quirk and Bevitt (1991).

Using the normal stresses in Fig. 18(b), we obtain the resultant moment MVL =0.5278abBs0 for the
short specimen and MVL =0.5408abBs0 for the two long specimens. Then from the moment Mtop, one
obtains the moment MtopÿMVL = 0.0457abBs0 for the short specimen and MtopÿMVL = 0.0351abBs0
for the long specimens. Because this moment (MtopÿMVL ) is larger for the short specimen than for the
long specimens, the opening stress syy along the ligament for the short specimen deviates more from the
uniform slip-line ®eld as shown in Fig. 18(a). On the other hand, the stress sxx on the V-line shown in
Fig. 18(b) is close to zero when y/Lr0.24 (i.e., yr2.4W or Lr2.4W ) for both L/W = 3 and
L/W = 10. Also from Fig. 15(b), the stress sxx vanishes as y/Lr0.8 (i.e., yr2.4W or Lr2W ).
Therefore, it may be concluded that when Lr2.4W (or roughly Lr2W ) the crack-tip stress ®eld and
constraint are independent of the specimen length L/W for CCP.

4. Fully plastic crack-tip ®eld of DECP specimen

In this section, we report our FEA results for the DECP specimen. Since there are many similarities
between CCP and DECP, we only report results for the e�ects of deformation level and crack depth on
the crack-tip stress ®elds or constraint. The close-form formulae of limit load are ®rst discussed for the
DECP specimen with di�erent crack depths; FEA results are then presented with special attention on
under what conditions the crack-tip stress ®eld can approach the Prandtl slip-line ®eld (Prandtl, 1920).
Unless speci®ed otherwise, in this section the dimensions of DECP specimen are a/W = 0.5, L/W = 3,
and loading type is the uniformly distributed load at the top edge. The rectangular and polar coordinate
systems at the crack tip are illustrated in Fig. 3(a).

4.1. Limit load for di�erent crack depths (a/W)

Since the slip-line ®eld of DECP specimens depends on the crack depth (Ewing and Hill, 1967),
several formulae of limit load for DECP are reported in various literatures. Based on theory of plasticity
(c.f. Kachanov, 1974 and McClintock, 1971), the limit load from slip-line ®eld of DECP with deep crack
can be written as

PL � 4���
3
p

�
1� p

2

�
�Wÿ a�Bs0 �4�

The limit load of DECP is also presented by Kumar et al. (1981), without any limitation, as the EPRI
result (Note that Miller (1988) pointed out that (5) is not correct)

PL �
�
0:72� 1:82

b

W

�
WBs0 �5�

Ewing and Hill (1967) indicated that for deep cracks of a/W >0.884 the slip-line ®eld is restricted to
the remaining ligament and is the well-known Prandtl ®eld, whose limit load can be calculated by (4).
For shallow cracks with a/W R 0.884, they represented the limit load as
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PL � 4���
3
p

�
1� ln

�
1� a

2b

��
�Wÿ a�Bs0 �6�

and indicated that for small a/W the di�erence between (6) and Hill's approximate formula

PL � 4���
3
p

��������������
1ÿ a

W

r
WBs0 �7�

can be ignored (c.f. Wu, et al., 1990).
Fig. 19 plots the variations of the limit load determined from (4)±(7) with crack depth a/W. The

straight line of limit load (4) intersects the curves of limit loads (5), (6) and (7) at a/W =0.825, a/W
=0.849 and a/W =0.884, respectively. The limit load (4) from the slip-line ®eld with deep cracks could
be invalid for `shallow cracks' of a/W R0.825. The value of limit load (5) from EPRI is higher than
that of (4) for `deep cracks' of a/W r0.825 and gives a ®nite value when a/W 41. Therefore (5) could
be invalid for these deep cracks. Fig. 19 indicates that for a/W R0.7 there is indeed no di�erence
between Ewing and Hill's limit load (6) and Hill's limit load (7). In the region of 0.4 R a/W R 0.7, the
three formulae of limit load (5), (6) and (7) are identical to each other. Our experience from FEA
indicates only the smallest value of the four limit loads given in (4)±(7) can be attained for a speci®c
crack. Therefore, one may argue that the valid range of the above limit loads (4), (5), (6) and (7) are
a/Wr0.884, 0.4 R a/W R 0.7, a/W R 0.884 and a/W R0.7, respectively. For convenience, we adopt the
limit load given by Ewing and Hill (1967), that is

PL �

8>>>><>>>>:
4���
3
p

�
1� ln

�
1� a

2b

��
�Wÿ a�Bs0, a=WR0:884

4���
3
p

�
1� p

2

�
�Wÿ a�Bs0, a=Wr0:884

�8�

4.2. E�ect of deformation level

Under small-scale yielding, the discussion in Section 3.1 indicates that the crack-tip ®eld of CCP is the

Fig. 19. Variations of di�erent limit load formulae of DECP with the crack depth a/W.
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Prandtl ®eld. This conclusion is also valid here for DECP under very small applied load. Fig. 20(a) and
(b) are the radial distributions of stresses along the remaining ligament and the angular variations of
stresses at r = 0.0005b from the crack tip for DECP with a/W = 0.5 and small applied load P =
0.1PL. Fig. 20(a) shows again that the stresses are small on the entire uncracked ligament, but when the
crack tip is approached the tensile stress syy ahead of the crack tip has a sharp increase and
approximately attains the limit value 2.97s0 of the Prandtl ®eld. Moreover, the angular stress
distribution in Fig. 20(b) is approximately the Prandtl ®eld. With increasing applied loads the mechanics

Fig. 20. Stress distributions of DECP specimen with a/W= 0.5 and L/W= 3 for uniformly distributed load P= 0.1PL. (a) Radial

distribution of stresses along the uncracked ligament, (b) angular distribution of stresses at r =0.0005b.

Fig. 21. Stress distributions of DECP specimen with a/W= 0.5 and L/W= 3 at the limit load. (a) Radial distribution of stresses

along the uncracked ligament, (b) angular distribution of stresses at r =0.05b.
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behavior of DECP is similar to that for CCP in that the stresses along the ligament decrease only at the
crack tip but increase on the entire ligament. At the limit load (8), the distributions of stress
components are depicted in Fig. 21(a) and (b), respectively, along the ligament and around the crack tip
at r =0.05b. Note that (i) an elastic sector exists in the interval of 1008 < y R 1808, (ii) a compressive
stress srr occurs near the crack face, and (iii) the stress distributions along the ligament are non-uniform.
Comparing of Fig. 20 and Fig. 21, one sees that the tensile stress or constraint immediately ahead of the
crack tip for DECP decreases with increasing load.

Fig. 22. Stress distributions of DECP specimen with a/W= 0.95 and L/W = 3 at the limit load. (a) Radial distribution of stresses

along the uncracked ligament, (b) angular distribution of stresses at r =0.05b.

Fig. 23. Comparison of stress variations of DECP specimen with L/W= 3 for a/W= 0.5, 0.9, 0.95 at the limit load. (a) Crack

opening stress syy along the uncracked ligament, (b) normal stress sxx along the vertical centerline.
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4.3. E�ect of crack depth (a/W)

Analyses in Section 4.1 and results in Fig. 19 show that the limit load of DECP depends on the crack
depth a/W. Fig. 21 shows the numerical results of DECP for the crack of a/W= 0.5 at the limit load.
For the deep crack of a/W = 0.95, the radial distributions of stresses along the ligament and angular
stress variations around the crack tip at r =0.05b are illustrated in Fig. 22 at the limit load by (8). The
stresses on the entire ligament attain the yielding state for this deep crack because Mises equivalent
stress se is equal to s0 anywhere along the ligament. The crack tip is completely enclosed by plastic
sectors and consequently the angular variations of stresses resemble the Prandtl ®eld. This is consistent
with the conclusion of Ewing and Hill (1967) on the slip-line ®eld of DECP. For a/W =0.9, stress
distributions are almost the same as those for a/W =0.95, but an elastic sector exists in about
1708 < y < 1808 so that the crack-tip stress ®eld is `slightly' di�erent from that for a/W =0.95. As can
be seen from Fig. 21(b) and Fig. 22(b), the behavior of a/W =0.9 is indeed a transition form `shallow'
to `deep' cracks for DECP specimen. The transition at a/W =0.9 is very close to the predicted value at
a/W= 0.884 by Ewing and Hill (1967) and is identical to the transition value obtained by Betegon and
Hancock (1991) for DECP specimen in low hardening materials.

Fig. 23 shows the comparison of the tensile stress syy along the uncracked ligament and the normal
stress sxx along the V-line for a/W =0.5, 0.9 and 0.95. As shown in Fig. 23(a), the tensile stress
distributions along the remaining ligament are nearly identical for the two deep cracks of a/W =0.9 and
a/W =0.95, but are di�erent from those for the shallow crack of a/W =0.5. The variations of stress sxx
along the V-line are di�erent for the three cracks, as shown in Fig. 23(b). From these stresses, the
moment MVL is determined to be 0.7869abBs0, 1.4744abBs0 for a/W =0.5, 0.9 and 0.95, respectively.
On the top edge, at the limit load (8) the resultant moment of DECP about mid-ligament for the
uniformly distributed loads can be written as

Mtop �

8>>>><>>>>:
1���
3
p

�
1� ln

�
1� a

2b

��
abBs0, a=WR0:0884

1���
3
p

�
1� p

2

�
abBs0, a=Wr0:884

�9�

From (9), Mtop = 0.8114abBs0 for a/W =0.5 and Mtop =1.4842abBs0 for both a/W =0.9 and
a/W = 0.95. Thus a counter-clockwise moment MtopÿMVL = 0.025abBs0, 0.010abBs0, 0.022abBs0 acts
respectively on the uncracked ligament about the mid-ligament for the three cracks. These moments are
small but by no means zero. Therefore, the opening stresses for the deep cracks are close to the uniform
value of the Prandtl ®eld on the entire remaining ligament. The results shown in Fig. 23(b) also indicate
that as y/Lr0.65 (i.e. yr1.95W or Lr2W ), the crack-tip ®eld is independent of the specimen length
L/W for DECP specimens.

5. Summary and conclusions

Detailed ®nite element analyses are performed for the CCP and DECP subjected to far ®eld tension in
non-hardening materials under plane strain conditions. The analyses are based on the small-strain
formulations and the J2 ¯ow theory associated with the von Mises yield rule for perfect plasticity. Based
on the present analyses and results, the following conclusions can be made:

1. At load levels under ten percent of the limit load, i.e. under small scale yielding, the plastic zone near
the crack tip is very small and the crack-tip stress ®eld is the Prandtl ®eld for both CCP and DECP.
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As the deformation level increases, the crack opening stress and constraint level at the crack tip
decrease for CCP of all crack depths and for DECP specimens of shallow cracks. At the limit load,
the stresses of CCP on the uncracked ligament approach the slip-line ®eld. For DECP with
su�ciently deep cracks (e.g. a/Wr0.95), the crack-tip constraint level remains `nearly' constant for
all deformation levels and the crack-tip ®eld is approximately the Prandtl ®eld.

2. The crack depth has certain e�ects on the crack-tip ®eld of CCP. At the limit load, the tensile stress
and constraint ahead of the crack tip increase gradually as a/W increases, and the crack-tip ®eld is
almost the same as the CCP slip-line ®eld in the plastic region 08 R y R 458 for all cracks of
a/W R 0.5. In contrast, the crack depth has considerable e�ects on the crack-tip ®eld for DECP. At
the limit load, the crack opening stresses on the entire ligament for shallow cracks are much smaller
than those for deep cracks in a DECP. The crack-tip ®eld is the Prandtl ®eld for the deep cracks of
a/Wr0.95 but slightly di�erent for a/W = 0.9. And the crack depth a/W = 0.9 is indeed the
transition between deep and shallow cracks of DECP. This transition value matches well with the
result of slip-line analyses by Ewing and Hill (1967) and is identical to that of Betegon and Hancock
(1991) for low hardening materials.

3. There is a vertical symmetrical centerline (V-line) for both CCP and DECP specimens. E�ect of
specimen length on the crack-tip ®elds can be determined by the variations and magnitude of stresses
on the V-line. For short specimens (e.g. L/W = 0.75), the stress sxx appears along the whole V-line,
and a tensile and a compressive yielding region occur near the top and bottom of V-line, respectively,
at the limit load. This was observed experimentally by Quirk and Bevitt (1991). For long specimens
(e.g. L/Wr3), only a portion of the V-line develops by sxx and there is no sxx acting on the V-line
near the top edge. When L/Wr2.4 (or roughly L/Wr2) for CCP and L/Wr2 for DECP, the crack-
tip stresses are independent of the specimen length.

4. At the limit load, the crack face is under compression for all cracked CCP and only for shallow
cracked DECP. For deep cracked DECP, the crack face is under tension. For CCP specimens, the
largest compressive stress along the V-line is at the crack face and the stress sxx along the ligament is
close to zero. For DECP specimens, however, the largest tensile stress along the V-line exists at the
ligament and the stress sxx along the ligament is much larger than zero.

5. When the specimens are loaded by remote tension, horizontal tensile and compressive stresses develop
simultaneously along the V-line of CCP and DECP and result in a bending moment MVL that
decreases the magnitude of stresses ahead of the crack tip. On the top edge of specimen, the applied
loads generate a moment Mtop about the mid-ligament that increases the magnitude of stresses ahead
of the crack tip. The moment di�erence (Mtop±MVL ) on the ligament about the mid-ligament is
generally small, but larger than zero for both CCP and DECP. Accordingly, the tensile stresses syy
along the ligament are only close to be uniform, but not exactly uniform for these specimens. The
experimental analyses of Quirk and Bevitt (1991) showed that it is due to this moment MVL on the
V-line, stable crack growth can occur in CCP specimen. The reason appears to be that an increasing
moment Mtop can be balanced by the increasing bending moment MVL as the crack grows. As such,
stable crack growth can be continued until the normal stress sxx along V-line attains a limiting
condition.

6. For CCP specimens, the limit load is represented by (2). For DECP specimens, however, the limit
load has di�erent forms as expressed by (4)±(7). Our FEA results indicate that the limit load formula
(5) of EPRI (Kumar et al., 1981 and Anderson, 1995) is valid only in the range of 0.4 R a/W R 0.7,
and the limit load formula (8) given by Ewing and Hill (1967) can be used for analyses of DECP
specimens with any crack depth.

Two loading types are adopted in this work. The ®rst is uniformly distributed applied loads and the
second is uniform rigid displacement. At the limit load, the FEA results converge easier using the ®rst
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loading than using the second. Crack-tip ®eld is closer to the slip-line ®eld for the ®rst loading than for
the second, but the di�erences are small.

We would like to conclude the current paper with a brief discussion on quantifying the constraint
level for CCP and DECP. It is demonstrated by Zhu and Chao (1999) that a three-term solution can be
used to quantify the constraint at a crack tip by use of the parameter A2. The three-term solution can be
written as

sij
s0
� ~sPrandtl

ij �y� � A2 ~s �2�ij �y, n � 30� � A2
2 ~s �3�ij �y, n � 30� �10�

where ~sPrandtl
ij �y� is the Prandtl stress ®eld, ~s �2�ij �y,n � 30� and ~s �3�ij �y,n � 30� are the second and third term

angular stress functions of a low hardening material n =30 (Chao and Zhang, 1997). Eq. (10) can be
used approximately to model the crack-tip stress ®eld of any specimens in non-hardening materials for
any deformation level. Using (10) to match with the present FEA stress results near the crack tip for
CCP and DECP specimens, e.g. syy at y=08, the constraint parameter A2 can be solved for di�erent
a/W. Having the A2 value determined for a speci®c specimen and loading level, the angular variations of
the stress components and hydrostatic stress (constraint) with a/W can then be predicted by (10). This is
of course beyond the scope of the current paper; but can be done without much di�culty.
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